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The property A is called:  «measurand» the reference property U is the «measurement unit»
the ratio between A and U today is always performed by a calibrated instrument  !
the measurement a expresses the amplitude or intensity of the property A we are studying …

Direct measurements: when there is a direct comparison between the measurand A and the unit U

Indirect measurements: when a physical law is applied to measure quantities other than the one we are 
interested in:
for example, measuring a velocity  v = x/t  by measuring a distance x and a time t

Measurements with calibrated instruments: by far the majority of the measurements performed today
the instrument has memorized inside the unit U  …

Direct instruments : (only very few) 

Indirect instruments : they always transform the physical quantity 
they acquire in input …

Analog  instruments

Digital instruments



Deflection instruments Null-out instruments Recording instruments

Sensor or
Transducer

Signal 
conditioner

Visualizing 
terminalA a

Basic MEASUREMENT CHAIN:



First question to be answered:  WHAT do we want to measure and WHY ?   

It’s a “KNOWLEDGE PATH” that leads to new quantitative INFORMATION about the world surrounding us !

• want we to have an approximate control of a physical quantity ?
• want we to do a rigorous scientific measurement ?
• want we to use the value of the measure for an automatic control ?
• want we to know to what extent can a physical parameter vary to set an alarm signal ?

1. we choose the instrument according to the “extension range” of the physical quantity to be measured, based 
on the amount of variation that is expected for the quantity and also on how fast the quantity changes its value 
during the measurement;

2. we reads the numeric data on the output device of the instrument;
3. by means of the graduation of the instrument we associate the numeric data a with the U units, performing 

actually the real measurement: A = a × U
4. at this point we still only have a raw measurement of the physical quantity A. We have to identify the many 

uncertainties ε associated with the raw data, correct the data we obtained and then switch to the final 
measurement: A = (a ± ε) × U 

5. with the diffusion of digital instrumentation is now possible to acquire many repeated measurements of a 
physical quantity a1 a2 ... an.  This raises the question of identifying the true magnitude of the value. We have 
therefore to go through a statistical analysis of the data …



We have to establish the QUALITY of a measurement

High quality measurements means being able to get data with low uncertainty; most of the times, this is 
also an expensive procedure ! 

To quantify the quality of a measurement we have to quantify first the quality of the instrument !

To this extent we can define 5 general metrological characteristics that apply to every measuring instrument 
or measuring system and completely describe its performances !

• MEASUREMENT SPAN
• SENSITIVITY
• STIFFNESS
• ACCURACY
• MEASUREMENT RAPIDITY



• MEASUREMENT SPAN

The measuring span is the numerical range between the minimum and maximum values of the “measurand” the 
instrument can appropriately measure and within which the other four instrument characteristics are valid !
Span = high operation limit – low operation limit

Graduation curve :

The operation of every instrument is based on a physical law, 
this law is described by an equation; the same equation is also 
the equation representative of the graduation curve !

if this equation is of 1st degree (a straight line) the instrument is said linear instrument !
if this equation is of 2nd degree (parabolic) the instrument is said quadratic instrument !



Example: find the graduation curve of the Hg thermometer 

the fundamental physical law (starting point) is the law of volumetric thermal expansion of all materials (fluids):  
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That’s the graduation curve !



Graduation curve should NOT be confused with the CALIBRATION curve :

)( bb ufuu  is the calibration curve, ie the curve of the differences between the reference value u 
and the «raw» instrument indication ub , for every instrument output ub .

if  u - ub > 0 u > ub the instrument under calibration “underestimates” the measurand magnitude 
(input) so we have to add the indicated deviaton to ub .

if  u - ub < 0 u < ub the instrument under calibration “overestimates” the measurand magnitude 
(input) so we have to subtract the indicated deviation from ub .

• u is the reference value or the indication of a reference instrument
• ub is the “raw” indication of the instrument under calibration



• SENSITIVITY

Capability of the instrument to «sense» small variations of the input variable (the measurand) 

how small can a variation Δi of the input be, to get 
from the instrument an appreciable output Δu ?

We can certainly write          that, for  variations                   means         , or better 

It is immediately observed that, if  u = f (i) is the graduation curve, the sensitivity is the derivative 

of the graduation curve !
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The sensitivity S can be calculated for every point of the graduation curve, by means of the differential ratio:
it has therefore also a geometric meaning: 
it’s the slope of the tangent to the graduation curve in the measuring point that is being considered.
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Examples:
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Instruments with a 
constant sensitivity 
are called linear instruments !

Instruments with a 
sensitivity that is a function of i
can be quadratic instruments !
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Instruments with a 
sensitivity that is a function of i
can be logarithmic instruments !
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Do not confuse the sensitivity with the resolution of an instrument, which actually is a more appropriate 
concept for digital instruments !



• STIFFNESS
The introduction of any measuring instrument into a measured medium always results in the extraction of some 
energy from the medium, thereby changing the value of the measured quantity from its undisturbed state !

This circumstance makes a perfect measurement theoretically impossible !

Every instrument that physically interacts with 
the measured quantity has a «loading effect» 
on the measurand and slightly changes its value

Instrument designer can only «minimize» this 
loading effect, which is called stiffness ! 

An instrument with a low stiffness means an 
instrument capable of doing measurements 
with a small loading effect !

TH2O is the same in the bathtub and in the glass.

The loading effect of the instrument is bigger when 

measuring T in the glass than in the bathtub !

example:

Stiffness is a “singular characteristic” because it depends also on the measurement environment and circumstances.



Some numerical means of expressing the loading effect of the instrument on the measured medium would be 
helpful in comparing competing instruments at the moment of their choice or purchase !

One parameter could be the insertion or connection error done by the instrument when connecting with the 
measurand:

where: ab is the numerical value of the measurand “before” the instrument insertion;
a is the numerical value of the measurand “after” the instrument insertion, and also the actual 
measurement returned by the instrument. 

Because  ab is a value that can NOT be measured, this parameter may seem useless ! 

Let’s go to a generalized definition of stiffness and input impedance : 

At the input of each component in a measuring system there exists a variable qi1 , the “effort variable”, that 
carries the “information content” of the measurement.  At the same input, however, there is a second variable qi2, 
associated with qi1, in a way that the product qi1 × qi2 has the “dimensions of power” and represents an 
instantaneous rate of “energy withdrawal” from the preceding element !  
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The generalized input impedance can then be defined as :

While the power drained from the preceding element is : 

and a “large” generalized input impedance is needed to keep the power drain small  !

These concepts can be immediately applied to an electrical example: a voltmeter measuring an unknown voltage V.
As soon as the meter is applied to the voltage terminals, the electrical circuit is changed and the value of V is no 
longer the same but changes to another value Vm . 
For a voltmeter the input variable of interest, the effort variable (qi1), is the terminal voltage Vm . If we look for an
associated variable (qi2) which, when multiplied by qi1 , gives the power withdrawal from the voltage terminals, we 
find the meter current im meets this requirement. 

Thus, the input impedance in this example is:  the meter resistance !

This situation is very important indeed and applies also to the internal stages of a more complex instrument chain, 
for example, when coupling a transducer that measures a physical quantity A and outputs a voltage V or a current i
to the signal processing stage that follows in the measurement chain ….  

2

1

i

i
gi

q

q
Z 

gi

i

Z

q
P

2

1

m

m

m

i

i
gi R

i

V

q

q
Z 

,2

1



Before connecting the voltmeter to the terminals we have :

V = V0 with I = 0 

After connecting the voltmeter we have: 

V0 = (Ri + Rv)·I with I ≠ 0

But the instrument measures:  

V = Rv·I ≠ V0

We commit an error :  the “connection error” 

If we wish to keep this error small we have to design either or     

Acting on the transducer output resistance Ri in not so easy therefore, the preferred way in designing the 
connection is making the input resistance  Rv of the signal processing stage (voltmeter) very big ! 

This choice prevents the signal V which carries the “information” about the measurement to degrade further ! 
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Before connecting the ammeter to the terminals we have :

I0 = Ii with I = 0 

After connecting the ammeter we have: 

I0 = Ii + I with 

And the instrument measures:  

I ≠ I0

aR

V
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We commit an error :  the “connection error” with because the 

two resistances Ri and Ra are now in a parallel configuration Ri //Ra

Therefore : 

And the connection error becomes :
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If we wish to keep this error small we have to design either or     

Having at disposal a current generator with a big internal short-circuit resistance  Ri is advisable but not so easy 
to obtain from a transducer which outputs a current therefore, the preferred way in designing the two stage 
connection is making the input resistance  Ra of the signal processing stage (ammeter) very small ! 

This choice prevents the current signal that carries the “information” on the measurement to degrade further !
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So far, all the metrological characteristics we studied are valid for a static measurand A  


